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Note on One-Dimensional Lattice Gas in 
External Fields$ 
W. KUNKIN and H. L. FRISCH 
Department of Chemistry 
State University of New York at Albany 
Albany, New York 

AbstractThe fundamental equations of the scaled particle theory are derived 
for a one-dimensional lattice gas in an external potential. These equations 
relate the work required to add a particle, at a fixed point, to a N - 1 particle 
system to the activity and to a seriea of coordinate distribution functions. The 
equations hold in any dimension, and replacing sums by integrals, describe 
continuum fluids. The rigid lattice gas is solved by these means. When nearest 
neighbors interact, in a positive, increasing external potential, a formal solu- 
tion is obtained by a matrix method. The grand partition function, in the 
infinite length limit, depends only on a single eigenvalue of an infinite product 
of matrices. The one-particle distribution, in this limit, is reduced to a series of 
terminating continued fractions, which is readily approximated in the high 
coordinate or low activity limit. Lastly, it is shown that the zeros of the grand 
partition function lie on the negative red axis of the complex activity plane 
when the nearest-neighbor interaction is positive. 

1. Rigid Lattice Gas 

We consider a one-dimensional lattice gas of N particles distributed on 
M latt,ice sites in an external potential U ( k ) .  We shall be interested in 
calcula,ting the one-particle distribution function, n,(k), defined by 

N N 
ni(ki) = ( N / N ! z N )  f e q 1 - 8  1 +(ki -kj) - B  c ~ ( k i ) ]  ( 1 . 1 )  

k,, ks, ..., kx-0 i<j i= l  

and 
N N 

z N = ( ~ / N ! )  5 e q [ - B x + ( k i - k , ) - B z  ~ ( k i ) ~ ,  (1.2) 
k l ,  k,, . . . , b - 0  k j  i=1 

in the special case that no more than one particle can be placed on one site 
-there being no other interactions. (For convenience, the grid spacing and 
thermal wavelength have been chosen to be unity.) 
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266 W. EUNKIN AND H. L. FRISCH 

The calculation will be performed in an unorthodox way: the distribu- 
tion will be related to the average, reversible work needed to add a (fixed) 
particle to a system of N - 1 identical particles. We thereby generalize the 
basic equations of the scaled particle theory1 to inhomogeneous 0uids. 

In general, an extra particle may be coupled into a system by a para- 
meter A, varying between zero and one, such that, h = 0 implies the particle 
is removed from the system and h = 1 implies full c~upling.~ Writing the 

interaction energy between this particle and the others aa h 1 +(ki - kl), 

the average work, W (k ; A), needed to “turn on” a particle at  site k up to 
A-strength is 

N 

i-2 

(1.3) 

where n,(k’ ; h’ I k) is a conditional density at k‘ in the presence of a particle 
at k. 

The pair distribution in (1.3) is easily eliminated. Differentiating (1.1) 
with the added particle ( “~ne” )  partially coupled, one obtains 

This integrates to 

%(kl) = zexp - BU(k;)l exp - B W l ) l *  (1.5) 

at full coupling, where a well known identity for the activity, z, has bean 
used : 

denoting the configurational sum in (1.2) by QN. Equation (1.5) is true also 
for continuum fluids. 

A n  alternate representation of the work, in terms of distribution func- 
tions rather than activity, can be found by expanding (1.5), into 
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NOTE ON ONE-DIMENSIONAL LATTICE GAS 267 

Introducing the Mayer f-factor 

into the last factor and expanding the resulting product, one finds 

x n?n(k29..., k,+l). (1.7) 

This holds for continuum fluids too, with the obvious modifications. 
Let us specialize to the rigid gas. Since 

0 ( k  z k‘) 
03 (k  = k’)’ # ( k - k ‘ )  = { 

while the mth order distribution vanishes for repeated arguments (m >, 2) 
e.g.3 

n2(k,k) =0 ,  

only the first two terms in (1.7) survive, or, 

exp [ - PW(k)]  = 1 - n,(k). (1.8) 

In a rigid gas we can derive (1.8) another way. When a particle is added 
to a system a t  a given lattice site, a hole is created with respect to the 
N - 1 remaining particles since no other can occupy that site. It ie generally 
true3 that the work required to create a hole in a fluid is proportional to the 
negative logarithm of the probability, p ,  of observing a hole formed 
spontaneously in the fully coupled system. Here, these quantities depend 
on location in the external field, but we need not be concerned with the 
dependence on hole size which is the constant volume per site. 

Explicitly, 
p ( k )  = exp - mwl. 

Since n,(k) is the probability of finding a particle at k,  

p ( k )  = 1 -n,(k) 

end Eq. (1.8) follows. In any case, combining (1.8) with (1.5) leads to 
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268 W. KWNKIN AND H. L. FRISCR 

where z is implicitly determined by 

M 

k-0 
n,(k) = N (1.10) 

The density, not surprisingly, has the form of a Fermi-Dirac distribution. 
If, in addition, particles on adjacent sites interact (neaxest-neighbor 

interactions), the first four terms in (1.7) are non-vanishing. This equation 
then provides only a limited amount of information in the form of a 
functional relation between the singlet, pair, and triplet distributions. I n  
the next section we formulate an exact approach to this interacting case. 
It remains an unanswered question whether Eqs. (1.5) and (1.7) or their 
continuum analogues can form the basis of a useful scaled particle theory 
of inhomogeneous fluids. 

2. Rigid Lattice Gas with Nearest-Neighbor Interactions 

We will describe the system by a set of mmbers n k ,  k = O , l ,  ..., M ,  
which gives the number of particles a t  each site. The infinite contact 
potential is taken care of by permitting nk to have only the value, Q zero or 
one. In addition the particles interact by a constant nearest-neighbor 
potential i.e., 

The M-site grand part.ition function is 

We shall only consider oxternal potentials which are positive and increas- 
ing functions; 4 however may have either sign. Equation (2.1) also 
describes (when the external potential is harmonic) a system of fermions 
with the nearest-neighbor interaction in momentum space. The existence 
of one-particle energy states is maintained as the interaction clearly 
commutes with the free particle Hamiltonian. 

We will employ an adaption of the matrix technique used, for example, 
in the Ising problem,‘ to calculate 3y. D e h e  a two-by-two matrix P, 
with matrix elements 
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269 NOTE ON ONE-DIMENSIONAL LATTICE GAS 

where x k  = exp [ - ,8U(k)] and @ = exp [ - ,841. By the convenient choice 
of the periodic boundary condition 

n M + 1  = 

3 M  becomes 

M 

k - 0  
3~ =Trace n P k .  

A matrix product containing k + 1 factors obeys the recursion relation 

(2.3) 

which is equivalent to four difference equations among the matrix 
elements: 

ak+2 - (l  +zk+l@)ak+l  + = k + l ( @  - = 0, (2.4a) 

bk = a k + l -  a k ,  (2.4b) 

and a similar pair of relations obtained by replacing ak by c k  and b,  by dk.  
(The initial conditions, assuming U(0) = 0, are a, = 1 and a, = 1 +z.)  If 
we define 

the v k  satisfy the non-linear recursion relation 

- - @I) 
1 + z  . 

(2.5) 
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270 W. KUNKTN AND H. L. FRISCH 

It follows thcrefore that the matrix element ak is the product 
k 

ak+l = n (2.7) 
i = O  

If this product converges as k becomes infinite, the grand partition function 
in the limit M --f 00 depends on a single matrix element by (2.4b). It is 

m 

The convergence of (2.8) will be shown in Appendix -4. It is brought about, 
of course, by the presence of the decaying exponential factor provided by 
the external potential. The grand potential per unit length, the quantity 
usually considered, vanishes in the seini-infinite system limit as do all 
other length averages. Nevertheless, locally dependent densities and 
pressures remain non-vanishing functions. 

The one-particle distribution is found by inserting nk inside the product 
of (2.1) and dividing by 3. It is therefore given by the formula (regarding 
the { z k }  aa a set of independent variablrts), 

in the semi-infinite system. We observe 
interchanging the order of the sums 

that Eq. (1.10) is satisfied for 

To illustrate the complexity of the functions (2.9), assume k > 1 (or 
1). Equation (2.5) implies that vk  approaches unity when k becomes z 

large, so we defhe a yk by 

PI), = 1 + yk. 
If yk is small it will a,pproximately satisfy the first ordar difference equation 

(2.10) Y k + l  - = k + l ( @  - I k k  -=k+I = O, (YO = '1 
which can be exactly solved. When the solution of (2.10) is inserted into 
the linearized version of (2.9), we obtain the densities 
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NOTE O N  ONE-DLMENSIONAL LATTICE QAS 271 

In the absence of the pair interaction, Eq. (2.11) reduces to a Boltzmann 
distribution. 

Finally, we state a theorem about the matrix elements ak. Inspection 
of Eq. (2.4a) shows that ak is a polynomial in z of order k having positive 
coefficients, hence a, has no zeros for real, positive z. Tf z is permitted to 
take on complex values, it can be shown that the uk(z)  has all its zeros 
on the negative real axis, for arbitrary k, when the nearest-neighbor 
interaction is positive. We conclude that the zeros of the grand partition 
function, in the semi-infinite system, lie entirely on the negative real axis. 
The proof follows in Appendix B. We can to some extent characterize 
the complex zero8 of for negative potentials, but we have not been 
able to rule out the occurrence of non-analyticities on the positive real 
axis as k -+ 03 in this caw. For a system which is finite in extent the grand 
partition function is analytic everywhere in the complex z plane. For such 
a system, there must also exiet some external forces in the form of wall 
forces to  confine it in space. We conjecture that the grand partition 
function will continue to be analytic in the limit of infinite volume in the 
presence of any external force of the kind considored here. 

Appendix A. Convergence of Grand Partition Function 
W 

A necessary and sufficient condition that n v k  converges, i.e., has a 
k-0 

W 

h i t e ,  non-zero value, is that, C y k  converges where 
k-0 

by Eq. (2.5). The proof is trivial: when the pair potential is positive 
(0 < # < 1),  it is obvious from (2.5) that all the v k  are greater than unity, 
while (2.10) indicates that t h e  same is true when the potential is negative, 
(1 < 4j < m). In both cases 

and the eeriea converges for all positive z. 
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272 W. KU"KIN AND R. L. FRISCH 

Appendix B. Zeros of the Grand Partition Function 

We will need some general theory of continued  fraction^.^ One defines 
the kth approximant to a (possibly infinite) continued fraction, PiclQk, to 
be 

p k / Q k  = 9 0  + P I  
91 +P2 

!?!2 + * 

and one can show that 

The uk in the text termkatee, thus it is equal to its own kth approximant. 
Consider the fraction ( B . l ) ,  with qo set to zero for convenience, in which 

the { p , }  are real aD.d positive and the {q,} are complex having positive real 
parts. The fraction vk assumes this form, when the pair potential is 
positive, by making the substitut,ions 

z = 202 

V k ( % )  = V; (w)w,  

into (2.5) and dividing by w. We may regard (B 
the sequence of transformations 

tl(s) = Pl/(qI +s), tAs) = Pi / (q i  +s), 
so that 

p k  - = tl t, ... tk(0). 
Qr 

Since Req, > 0 the transformation ti(s) maps 
into the right half-plane of t i ,  in particular t,(s) 
circular region 

1 )  as being generated by 

i = 1,2,  ..., k 

the right half-plane of s 
maps Rcs 2 0 upon the 

(The value of the first approximant lies OF. the circumference of this 
circle.) We conclude that the product of tramformations (B.3)  maps 
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NOTE ON ONE-DIMENSIONAL LATTICE QAS 273 

RRs > 0 into this same circular region i.e., 

or the fraction is bounded in a region in the complex activity plane 
equivalent to Re ql > 0. This region is 

Re{; +w@xk-l} > 0, 

or 

Rew > o  (B-6) 

Hence wk(z) is bounded in the full z plane with the exception of the 
negative real axis. Since, by (B.2), the numerator and denominator of any 
approximant cannot vanish simultaneo&ly, ak(z) has all its zeros on the 
negative real axis. 

Similar considerations for negative pair potentials (define it&) = ul.(w)w) 
lead only to  the inconclusive result that the complex zeros of a&) lie in the 
annular region 
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